The Osgood condition for stochastic partial differential equations

نویسندگان

چکیده

We study the following equation \begin{equation*}\frac{\partial u(t,x)}{\partial t}=\Delta u(t,x)+b\bigl(u(t,x)\bigr)+\sigma \dot{W}(t,x),\quad t>0,\end{equation*} where $\sigma $ is a positive constant and $\dot{W}$ space–time white noise. The initial condition $u(0,x)=u_{0}(x)$ assumed to be nonnegative continuous function. first problem on $[0,1]$ with homogeneous Dirichlet boundary conditions. Under some suitable conditions, together theorem of Bonder Groisman in (Phys. D 238 (2009) 209–215), our result shows that solution blows up finite time if only for $a>0$, \begin{equation*}\int _{a}^{\infty }\frac{1}{b(s)}\,\mathrm{d}s<\infty,\end{equation*} which well-known Osgood condition. also consider same whole line show above sufficient nonexistence global solutions. Various other extensions are provided; we look at equations fractional Laplacian spatial colored noise $\mathbf{R}^{d}$.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

On the Exact Solution for Nonlinear Partial Differential Equations

In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...

متن کامل

Algorithm Refinement for Stochastic Partial Differential Equations

We construct a hybrid particle/continuum algorithm for linear diffusion in the fluctuating hydrodynamic limit. The particles act as independent random walkers and the fluctuating diffusion equation is solved by a finite difference scheme. At the interface between the particle and continuum computations the coupling is by flux matching, and yields exact mass conservation. This approach is an ext...

متن کامل

Postprocessing for Stochastic Parabolic Partial Differential Equations

We investigate the strong approximation of stochastic parabolic partial differential equations with additive noise. We introduce post-processing in the context of a standard Galerkin approximation, although other spatial discretizations are possible. In time, we follow [20] and use an exponential integrator. We prove strong error estimates and discuss the best number of postprocessing terms to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bernoulli

سال: 2021

ISSN: ['1573-9759', '1350-7265']

DOI: https://doi.org/10.3150/20-bej1240